14.1.2. Равномерное распределение

Самое простое распределение случайной величины — это распределение с постоянной вероятностью. Вероятность p=const=1/ (b-a) при хе(а,b) и P=0, для х вне интервала (а,Ь). Эту плотность вероятности, наряду с прочими статистическими характеристиками, задают следующие встроенные функции:

  • dunif (x,a,b) — плотность вероятности равномерного распределения;
  • punif(x,a,b) — функция равномерного распределения;
  • qunif(p,a,b) — квантиль равномерного распределения;
  • runif (м,а,Ь) — вектор м независимых случайных чисел, каждое из которых имеет равномерное распределение;
  • rnd (x) — случайное число, имеющее равномерную плотность распределения на интервале (о, х);
    • х — значение случайной величины;
    • Р — значение вероятности;
    • (а,ы — интервал, на котором случайная величина распределена равномерно.

Рис. 14.4. Псевдослучайные числа с равномерным законом распределения

Чаще всего в несложных программах применяется последняя функция, которая приводит к генерации одного псевдослучайного числа. Наличие такой встроенной функции в Mathcad — дань традиции, применяемой в большинстве сред программирования. Пример использования генератора вектора из м случайных чисел показан на рис. 14.4, который получен заменой в двух последних строках листинга 14.7 генератора нормальных чисел на runif (м,о, 1). Плотность вероятности и функция равномерного распределения показаны на рис. 14.5.

Рис. 14.5. Плотность вероятности и функция равномерного распределения