9.5.1. Модели динамики биологических популяций



Модель взаимодействия "хищник—жертва" независимо предложили в 1925— 1927 гг. Лотка и Вольтерра. Два дифференциальных уравнения (листинг 9.13) моделируют временную динамику численности двух биологических популяций жертвы уо и хищника уь Предполагается, что жертвы размножаются с постоянной скоростью с, а их численность убывает вследствие поедания хищниками. Хищники же размножаются со скоростью, пропорциональной количеству пищи (с коэффициентом г), и умирают естественным образом (смертность определяется константой о). В листинге рассчитываются три решения о, с, р для разных начальных условий.
Листинг 9.13. Модель "хищник-жертва"


Модель замечательна тем, что в такой системе наблюдаются циклическое увеличение и уменьшение численности и хищника (рис. 9.17), и жертвы, так часто наблюдаемое в природе. Фазовый портрет системы представляет собой концентрические замкнутые кривые, окружающие одну стационарную точку, называемую центром. Как видно, модельные колебания численности обеих популяций существенно зависят от начальных условий — после каждого периода колебаний система возвращается в ту же точку. Динамические системы с таким поведением называют негрубыми.

ПРИМЕЧАНИЕ

Пример негрубой системы (модель осциллятора без затухания) с особой точкой типа "центр" был нами рассмотрен ранее (см. разд. 9.1).




Рис. 9.17. График решения (слева) и фазовый портрет (справа) системы "хищник—жертва" (продолжение листинга 9.13)


Рассмотренную модель динамики двух популяций легко можно модифицировать, изменив тип взаимодействия "хищник—жертва" на тип конкуренции. Для этого надо учесть, что рост численности каждой популяции тормозит, во-первых, межвидовая, и, во-вторых, внутривидовая конкуренция.

В результате система (во второй строке листинга) запишется в виде:

где матрица г задает коэффициенты убывания численности вследствие конкурентной борьбы (диагональные элементы соответствуют внутри-, а недиагональные — межвидовой конкуренции).

График решения (для разных начальных условий) и фазовый портрет для описанной системы ОДУ показаны на рис. 9.18. Как видно, конкурентная борьба приводит к установлению некоторого стационарного состояния, выражающего равновесие видов. Особая точка, к которой стремится решение системы ОДУ подобным образом, называется узлом.

ПРИМЕЧАНИЕ

Соответствующий файл с программой вы найдете на компакт-диске, вместе с более простой моделью динамики одной популяции с внутривидовой конкуренцией (называемой логистической моделью).




Рис. 9.18. График решения (слева) и фазовый портрет (справа) модели конкуренции популяций

 
Выставки, сколько стоит тротуарная плитка в запорожье.